@CERTII—(

Security Assessment

Musk Identity

Certificate Assessment Date: October 8, 2025

{JCeERT K

Executive Summary

Certificate Assessment Date: August 28, 2025

Musk Identity

SUMMARY | Musk

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES ECOSYSTEM METHODS

Smart Musk Identity Manual Review, Static Analysis
ontract

LANGUAGE TIMELINE KEY COMPONENTS

Swift Delivered on 8/28/2025 N/A

Vulnerability Summary

5

Total Findings

3

0 0

Resolved Mitigated Partially Resolved Acknowledged Declined

Critical risks are those that impact the safe functioning of
a platform and must be addressed before launch. Users
should not investin any project with outstanding critical

risks.

Major risks can include centralization issues and logical
errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

M 0 Critical

B 0 Major

0 Medium
Minor

2 Partially Resolved

Minor risks can be any of the above, but on a smaller
scale. They generally do not compromise the overall
integrity of the project, but they may be less efficient than

other solutions.

M 3 Informational

3 Resolved
|

Informational errors are often recommendations to
improve the style of the code or certain operations to fall
within industry best practices. They usually do not affect

the overall functioning of the code.

{JCeERT K

TABLE OF CONTENTS | Musk |dentity

I Summary
Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

I Review Notes
I Findings

GLOBAL-01 : SDK uses crypto modules that are no longer active

GLOBAL-02 : FrontEnd use Insecure Cryptographic Primitives

GLOBAL-03 : Risky Implementation on Memory Free Operation

GLOBAL-04 : Hard-coded Secrets Found in SDK code

GLOBAL-05 : Potential Integer Overflow Risk in Data Handling.

I Appendix

I Disclaimer

TABLE OF CONTENTS | Musk

\JceERrRTIK AUDITSCOPE | Musk

AUDIT SCOPE | Musk Identity

0 files audited

ID Repo File SHA256 Checksum

{JCeERT K APPROACH & METHODS | Musk

APPROACH & METHODS | Musk Identity

I Introduction

This report has been prepared for Musk Identity to identify issues and vulnerabilities in the supplied source code snippets of

the front- end, mobile (i0S/Android), and SDK components. The code shippets are supplied to us in individual zipped files,

each

having the following hash:

0b02b2b5¢c25d7b00£4d52a4c90£a89£9ed736£37 FE.zip

1188830aabaf47af8cl148dccc755¢cc5571b288c9 Mobile.zip

094d5a1d0d39cdd287a4a874d41706978b£f321e0 sdk.zip

The primary goal of this engagement was to scrutinise the source code to gauge the application's resilience against various
logic issues and vulnerabilities targeting its controls and functionalities. This process was essential for identifying
vulnerabilities and weaknesses within the codebase, thereby enabling the provision of tailored recommendations to enhance

and fortify its security posture.
This security assessment is an extension of the previous Musk Identity's Blackbox penetration test performed on the Musk

Identity wallet. The findings of the prior assessment are documented separately and are not included in this report.

I Scope of the Auditing

During this audit review process, CertiK security team has reviewed the following components.

A portion of Mobile App Source Code: The mobile source code contains both the iOS and Android components

responsible for wallet creation/import, password management, and data backup to cloud platforms.

A Front End Module: The front-end source code contains the ReactJS Ul components for the wallet functionalities, as well

as the JS controllers used for interacting with the keyring.
Multiple Modules of Wallet SDK: The SDK contains the following components:

« Bitcoin SDK: written in Golang, it is used to interact with the Bitcoin Mainnet or Testnet.
+ okwallet-core: mnemonic generator and wallet management.

« src: Javascript/Typescript component containing BIP32 and BIP39 support and various mathematical modules,

ranging from elliptic curve calculation to hashing algorithms.

I Summary of Findings

{JCeERT K APPROACH & METHODS | Musk

Overall we found the modules being reviewed are secure against the risks being considered in this audit process. The exact

risk being reviewed and our evaluation results are presented below in separate sections.

Through this static review process, we found 5 security issues. Three of them are low risk and informational findings, and two
of them are with undetermined risk levels. They are likely low risk, but we can not make a final determination due to the

scope limit.

I Limitations

The following limitations were encountered during the audit, which significantly restricted our ability to perform a

comprehensive and thorough security assessment.

The constraints outlined below limit our ability to holistically evaluate the codebase and assess the overall security of the

applications and the SDKs:

« Only certain parts of the codebase were shared, it is NOT possible to establish how/where certain functions are used

and if memory cleanup is done correctly.

+ Given that only partial code was shared, we cannot perform dynamic analysis. Dynamic analysis would clarify if there

are any signs of Pll leakage, either through application memory or filesystem.

« For the third party dependencies used, the versions could not be established. Some of the libraries used have

security vulnerabilities in older versions and it is not possible to determine if the client is at risk or not.
+ Mobile app configurations were not shared. (AndroidManifest.xml / Info.plist)

+ The shared codebase makes extensive use of internal dependencies which could not be audited. This makes it
impossible to determine if the client is exposed to dependency confusion or supply chain attacks.

I Mobile Application Audit Summary

Two mobile applications, an iOS app written in Swift + Objective-C and an Android app written in Kotlin, were provided by the
client. The application code mostly concerned wallet operations, the entire source code was not provided but sensitive

operations regarding wallets and backups could be analyzed.

Threat Vectors Being Reviewed

Our testing was focused on the following attack vectors:
+ Dependency Confusion / Supply Chain attacks

o Mobile apps mostly use Musk Identity’s internal libraries, most of which were not
o provided. We check whether the application depends on any known risky third-party

packages.

{JceERrRTIK APPROACH & METHODS | Musk

+ Insecure Data Storage

o The application allows users to backup their wallets on Huawei Drive, Google Drive or iCloud. We check

whether the backup process is implemented following good coding practices.

+ Insecure Cryptographic Primitives

o Check whether the cryptographic primitives in use adhere to the standards.

+ Memory Manipulation

o Check whether the applications adopt good memory operation practice.

+ Hard-coded Secrets

o We check whether the applications contain or make use of hard-coded secrets.

Summary Review Results

Below is our summary of the code security status

+ Dependency Confusion / Supply Chain attacks

o Mobile apps mostly use Musk Identity’s internal libraries, most of which were not provided. The other
third-party dependencies that are used by the applications are either static or primitives of the

respective platform which are unlikely to contain maliciouscode.

+ Insecure Data Storage

o The sensitive information corresponding to each wallet is encrypted throughout the lifecycle of the
application. The password is encrypted with an AES key that is generated at runtime. The sensitive

information is also not logged or stored unencrypted on the filesystem.

o We confirm these backups are encrypted with a symmetric key that is derived from a user-supplied

password. A password is required to enable backups.

+ Insecure Cryptographic Primitives

o We confirm that the cryptographic primitives in use adhere to the standards. The apps make use of

{JCeERT K APPROACH & METHODS | Musk

strong symmetric and asymmetric encryption algorithms.

+ Memory Manipulation

o The applications generally manage memory well. An information recommendation is provided in the
finding section.

o No UAF risks were identified in the client’s source code.

+ Hard-coded Secrets

o The applications do not contain or make use of hard-coded secrets.

I SDK Audit Summary

The following components were provided by the client for the presented engagement:

+ Bitcoin SDK: written in Golang, used to interact with the Bitcoin Mainnet or Testnet.
+ okwallet-core: written in Golang, used for mnemonic generation and wallet management.

» src: Javascript/Typescript component containing BIP32 and BIP39 support and various mathematical modules,

ranging from elliptic curve calculation to hashing algorithms.

Threat Vectors Being Reviewed

Our testing was focused on the following attack vectors:
+ Dependency Confusion / Supply Chain attacks
o The SDK uses multiple sources for the module importing within both the JS and Golang components of

the SDK. The sources range from local files to libraries located in Musk Identity’s internal repositories,

as well as third-party modules.

o We check whether the application depends on any known risky third-party packages.

+ Data Storage

o We check whether the data access to the storage is limited and secure.

+ Cryptographic Primitives

\JceERrRTIK APPROACH & METHODS | Musk

o Check whether the cryptographic primitives in use adhere to the standards.

+ Hard-coded Secrets

o We check whether the applications contain or make use of hard-coded secrets.

» Data Handling

o We check whether the implementation adopt good security practices on handling data processing.

Summary Review Results

Our testing was focused on the following attack vectors:

+ Dependency Confusion / Supply Chain attacks

o We found some component use modules that are no longer under active development. Please find

detailed information in the finding section.

o The version of sed in the client’s SDK could not be established based on the shared

source code.

o he internal repositories used within the imports are locatedat Iokinc.com(64.98.l35.50)] and

[gitlab.okg.com (10.254.3.52)].

o Making use of internal dependencies is recommended but it is not possible to establish if the referenced
internal dependencies could be vulnerable to supply chain attacks, as they were not shared in the scope
of the audit. It's strongly recommended to review the configuration and contents of the third-party

modules imported within the applications.

+ Data Storage

o The okwallet-core library is used for mnemonic generation and wallet management. The data is
transmitted within the function calls, mostly through the object.

+ Cryptographic Primitives

o The cryptographic primitives in use adhere to the standards. The apps make use of strong symmetric

and asymmetric encryption algorithms. Hard-coded Secrets

o We found a hard-coded secret in the code, however, no function calls towards these functions have

been observed within the provided codebase. Details are provided in the finding section.

- {JCERT K APPROACH & METHODS | Musk

+ Data Handling

o We identified a snippet of code that could allow an integer overflow if a sufficiently large integer is cast
as a uint32. This function is actively used in the codebase but it is not possible to determine if there is a
real risk of an integer overflow in the client's codebase, as we cannot establish the runtime values of the

provided parameters.

IFront-End Audit Summary

The supplied codebase contains the ReactdS Ul components for the wallet functionalities, as well as the JS controllers used
for interacting with the keyring. The keyring controllers offer support for multiple environments: BTC, ETH, Ronin, Harmony,

and Cardano.
Threat Vectors Being Reviewed
Our testing was focused on the following attack vectors:
+ Dependency Confusion / Supply Chain attacks

o We check whether the application depends on any known risky third-party packages.

+ Data Storage

o We check whether the data access to the storage is limited and secure.

*

Cryptographic Primitives

o Check whether the cryptographic primitives in use adhere to the standards.

+ Hard-coded Secrets

o We check whether the applications contain or make use of hard-coded secrets.

+ Data Handling

o We check whether the implementation adopt good security practices on handling data processing.

{JCERT K APPROACH & METHODS | Musk

Summary Review Results

Below is a summary of our evaluation of front-end code against the above risks:

+ Dependency Confusion / Supply Chain attacks

o The application mostly uses Musk Identity’s shared libraries, most of which were not provided. The other
third- party dependencies that are used by the applications are either static or primitives of the respective

platform which are unlikely to contain malicious code.

+ Data Storage

o The sensitive information corresponding to each keychain is encrypted throughout the lifecycle of the

application within the Musk Identitywallet/app/scripts/controllers/keyrings/browser-passworder.ts file.

+ Insecure Cryptographic Primitives

o The cryptographic primitives in use mostly adhere to the standards, with the following exception:

o The random number generator is a custom implementation, which has a potential risk. Detail is provided

in the finding section.

+ Code Injection/Cross-Site Scripting

o The application sanitizes the input before injecting it into the Ul components through ReactJS’s
sanitization mechanism. Furthermore, vulnerable calls such as dangerouslySetinnerHTML were not

observed within the codebase.

+ Hard-coded Secrets

o The application does not contain or make use of hard-coded secrets.

\JceERrRTIK REVIEWNOTES | Musk

REVIEW NOTES | Musk Identity

This security assessment is an extension of the previous Musk Identity's Blackbox penetration test performed on the Musk

Identity wallet. The findings of the prior assessment are documented separately and are not included in this report.

@CERTIK FINDINGS | Musk
FINDINGS | Musk Identity

5 0 3

Total Findings Critical Major Medium Minor Informational

This report has been prepared to discover issues and vulnerabilities for Musk Identity. Through this audit, we have uncovered
5 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category STEAVETY Status
SDK Uses Crypto Modules ThatAre No Coding
GLOBAL-01 Minor Partially Resolved
Longer Active Issue
FrontEnd Use Insecure Cryptographic Coding
GLOBAL-02 Minor Partially Resolved
Primitives Issue
Risky Implementation On Memory Free Coding
GLOBAL-03] Informational @ Resolved
Operation Issue
Coding
GLOBAL-04 Hard-Coded Secrets Found In SDK Code | Informational ® Resolved
ssue
Potential Integer Overflow Risk In Data Coding
GLOBAL-05 Informational @® Resolved
Handling. Issue

@ CERT K GLOBAL-01 | Musk

GLOBAL-01 | SDKUSES CRYPTO MODULES THATARE NO
LONGER ACTIVE

Category Severity Location Status

Coding Issue Minor Partially Resolved

I Description

The SDK uses multiple sources for the module importing within both the JS and Golang components of the SDK. The JS
component (audit/src/index.ts) uses the module, which is nolonger under active development.

The Golang components (audit/src/index.ts) use the module, which is no longer under active development. It's
recommended to replace the import with the native library.

I Recommendation

It's recommended to replace the import with the native library.

I Alleviation

The developers will replace the module in a futurerelease.

- {JCeERT K GLOBAL-02 | Musk

GLOBAL-02 | FRONTEND USE INSECURE CRYPTOGRAPHIC
PRIMITIVES

Category Severity Location Status
Coding Issue Minor Partially Resolved
Description

We found the cryptographic primitives used a custom random number generation implementation. It's using the

JS function, which is cryptographically insecure.

[Musx |

I Recommendation

It's strongly recommended to use the ’Crypto.getRandomValues 0] function.

I Alleviation

The developers will replace the function with a more cryptographically secure generationmethod.

@ CERT K GLOBAL-3 | Musk

GLOBAL-03 | RISKY IMPLEMENTATION ON MEMORY FREE
OPERATION

Category Severity Location Status
Coding Issue ® Informational @® Resolved
Description

In the iOS app, we identified a snippet of code that potentially could free previously allocated memory. No concret memory

manipulation risks (UAF) were identified in the client's source code.

The memory being free here (ptr) could be already freed in other calls, and ptr is not set to NULL (which is not a must in

free).

void tryToF tr(void *ptr){
if(ptr == NULL){

return;

}
free(ptr);

I Recommendation

This snippet of code could be improved by null-ing the pointer values after free-ing, to prevent potential Use-after-Free (UAF)

vulnerabilities by protecting against a dangling pointer:

void tryToFreePtr (void **ptr)
{ if (ptr && *ptr) {

free (*ptr) ; // Free the allocated memory

*ptr = NULL; // Set the original pointer to NULL

It's also worth noting that if the pointer describes a nested structure, other nested pointers should also be freed beforehand,

to avoid memory leaks.

I Alleviation

The Client fixed the issue in the code snippet that was sent after the engagement.

{JCERT K GLOBAL4 | Musk

GLOBAL-04 ‘ HARD-CODED SECRETS FOUND IN SDKCODE

Category STEAVETY Location Status
Coding Issue @® Informational @® Resolved
Description

The okwallet-core component contains the AesEncrypt and AesDecrypt functions which use the encryption key that is

hardcoded at [audit/okwallet—core/util/util .go:267 l:

var AesHardKey = common.MD5 ("1697773335922")

// BResEncrypt AES MZEHE

func AesEncrypt (message, key string) (string, error)
{ if len(message) == 0 {
return "", fmt.Errorf ("message is empty")
}
if len(key) == 0
{ key =
AesHardKey
}

return common.Encrypt (message, key)

No function calls towards these functions have been observed within the provided codebase. If this code snippet is not
actively used, there are no security issues. However, if this code is being used in other parts of the client’s software,

this potentially poses a serious security problem.

Note: The reason this issue is undetermined is that we have only partial code. Although no reference to this hard coded
secret was found in the code given to us, we can not conclude that code not shared with us did not use this hard-coded

secret As such, the Severity is set as Informational, however it could be higher.

I Recommendation

Remove this hard-coded secret from code, and make sure no other place in the software use it.

I Alleviation

The hardcoded secret was removed from the codebase.

{JCERT K GLOBAL-5 | Musk

GLOBAL-05 | POTENTIAL INTEGER OVERFLOW RISK IN DATA
HANDLING.

Category Severity Location Status
Coding Issue ® Informational ® Resolved
Description

We identified a snippet of code that could allow an integer overflow if a sufficiently large integer is cast as a . The

snippet of code is foundhere: [bitcoin/bre20/util.go:15 |

func ConvertToUint32 (v string) uint32

{1, := strconv.Atoi (v)

return uint32 (i)

Note: This function is actively used in the codebase but it is not possible to determine if there is a real risk of an integer
overflow in the client's codebase, as we cannot establish the runtime values of the provided parameters. As such, the

Severity is set as Informational, however it could be higher.

I Recommendation

The snippet of code could be improved by using the [strconv. ParseInt] function.

I Alleviation

The new version of the codeuses the [strconv. Parselnt] function in order toconvert the supplied string.

{JCeERT K APPENDIX | Musk

APPENDIX | Musk Identity

I Finding Categories

Categories Description

Coding Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

Issue compile errors, and performance issues.

I Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

{JceERrRTIK DISCLAIMER | Musk

DISCLAIMER | CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, con dentiality,
disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions
provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the
Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and
conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person
for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval’ of any particular project or team. This report
is not, nor should be considered, an indication of the economics or value of any “product” or “asset’ created by any team or
project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee
regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.
This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report
represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company
and individual are responsible for their own due diligence and continuous security. CertiK's goal is to help reduce the attack
vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that
your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,
where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY
PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL
FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER
APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT
LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM
COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO
WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR
OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER'S OR ANY
OTHER PERSON’'S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY
SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL
CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

{JceERrRTIK DISCLAIMER | Musk

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER'S
REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,
APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR
RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE
CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK'S AGENTS MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR
CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO
LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND
MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY
CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING
FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR
CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY
OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO
CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY
IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT
CERTIK'S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER
BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO
SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE
BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,
SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO
SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION
UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,
REGULATORY, OR OTHER ADVICE.

CertiK | Securing the Web3 \World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a
leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-
based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,
we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

000000

Musk Identity Security | Certificate Assessment Date: | Capyright © CertiK

Assessment August 28, 2025

	Executive Summary
	Vulnerability Summary
	3
	0
	2
	0
	0
	S ummary
	A ppendix
	Introduction
	Scope of the Auditing
	Summary of Findings
	Limitations
	Mobile Application Audit Summary
	Threat Vectors Being Reviewed
	Dependency Confusion / Supply Chain attacks
	Insecure Data Storage
	Insecure Cryptographic Primitives
	Memory Manipulation
	Hard-coded Secrets

	Summary Review Results
	Dependency Confusion / Supply Chain attacks
	Insecure Data Storage
	Insecure Cryptographic Primitives
	Memory Manipulation
	Hard-coded Secrets

	SDK Audit Summary
	Threat Vectors Being Reviewed
	Dependency Confusion / Supply Chain attacks
	Data Storage
	Cryptographic Primitives
	Hard-coded Secrets
	Data Handling

	Summary Review Results
	Dependency Confusion / Supply Chain attacks
	Data Storage
	Cryptographic Primitives
	Data Handling

	Front-End Audit Summary
	Threat Vectors Being Reviewed
	Dependency Confusion / Supply Chain attacks
	Data Storage
	Cryptographic Primitives
	Hard-coded Secrets
	Data Handling

	Summary Review Results
	Dependency Confusion / Supply Chain attacks
	Data Storage
	Insecure Cryptographic Primitives
	Code Injection/Cross-Site Scripting
	Hard-coded Secrets

	5
	Description
	Recommendation
	Alleviation
	FRONTEND USE INSECURE CRYPTOGRAPHIC PRIMITIVES
	Recommendation
	Alleviation

	GLOBAL-03
	RISKY IMPLEMENTATION ON MEMORY FREE OPERATION
	Recommendation
	Alleviation
	Recommendation
	Alleviation

	GLOBAL-05
	POTENTIAL INTEGER OVERFLOW RISK IN DATA HANDLING.
	Recommendation
	Alleviation
	Finding Categories
	Checksum Calculation Method

